PU server chassis serve as the structural and thermal backbone of modern AI computing. They enable stable GPU performance through optimized airflow, high-density layouts, and enterprise-grade mechanical design. A well-engineered chassis doesn’t just hold components—it ensures sustained compute power, scalability, and long-term reliability in data centers, AI labs, and edge environments.
OneChassis provides OEM/ODM-ready GPU server enclosures from 4U to 10U, helping enterprises build systems that deliver consistent performance under real workloads.
Liquid-cooled industrial chassis deliver reliable thermal performance for high-density computing in factories, edge data centers, and AI-driven automation. By using coolant instead of high-RPM fans, these systems achieve lower noise, higher heat-removal efficiency, and stable operation under continuous heavy workloads. Liquid cooling supports GPU-intensive industrial AI workloads, enhances system longevity, and enables deployment in thermally constrained or dusty environments where air cooling struggles.
At ONECHASSIS, we believe every millimeter of metal matters. This article takes you inside our design process —from sheet metal precision to airflow simulation —showing how we turn raw steel into GPU server cases trusted by engineers worldwide. Discover how material choice, structural accuracy, and airflow design directly impact GPU stability and lifespan. See how robotic fabrication, ±0.1 mm tolerance control, and real-world thermal testing define our approach to building cases that simply work —cooler, quieter, and longer.
Why the Right Metal Matters?
At ONECHASSIS, every millimeter matters. Our GPU Server Chassis are engineered from the ground up—optimized metal structure, intelligent airflow design, and real-world testing—to deliver cooler, quieter, and longer-lasting performance for AI and HPC systems. Explore how precision engineering turns hardware stability into competitive advantage.
In the last 12 months, we’ve seen 2 clients hit the same wall — everything on paper looked right, yet their upgraded GPU servers overheated or failed under load. The culprit? Case compatibility. It’s not flashy, but when you’re scaling, it’s the quiet deal-breaker that can burn your timeline and your budget.
In environments where uptime is everything — AI labs, biotech data centers, rendering studios — a power interruption doesn’t just waste time; it breaks momentum. That’s why redundant PSU design isn’t a “nice-to-have” anymore. It’s the unsung backbone of modern GPU chassis reliability.
Discover how optimized airflow, precision fan layouts, and material engineering reshape cooling efficiency — and why it’s redefining performance for high-density GPU servers.